NTC负温度系数热敏电阻基础知识

 技术文章     |      2022-04-07 17:03

NTC负温度系数热敏电阻工作原理

NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛用于测温、控温、温度补偿等方面。

NTC负温度系数热敏电阻构成

NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料。

NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数,电阻值可近似表示为:

式中RT、RT0分别为温度T、T0时的电阻值,Bn为材料常数.陶瓷晶粒本身由于温度变化而使电阻率发生变化,这是由半导体特性决定的。

NTC负温度系数热敏最重要的性能是寿命

长寿命NTC热敏电阻,是对NTC热敏电阻认识的提升,强调电阻寿命的重要性。NTC热敏电阻最重要的是寿命,在经得起各种高精度、高灵敏度、高可靠、超高温、高压力考验后,它仍很长时间稳定工作。

寿命是NTC热敏电阻的一个重要性能,与精度、灵敏度等其他参数存在辩证关系。一个NTC电阻产品,必须首先长寿命,才能保证其他性能的发挥;而其他性能的优秀,依赖到生产工艺达到一定技术水平,这让NTC的长寿命变成可能。

很多高科技电子产品,在超高温、超高压及其他恶劣条件下,需要热敏电阻发挥稳定的控温、测温功能,多数厂家一味追求NTC热敏电阻的精度、灵敏度、漂移值等常规性能的稳定发挥,忽视了电阻的寿命,导致因NTC无法长时间工作而影响电子产品的使用。如此一来,所有的精度、灵敏度、耐高温等等,都变得没有意义。

NTC负温度系数热敏电阻历史

NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器。

NTC负温度系数热敏电阻温度范围

它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.

负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量。

NTC温度传感器是一种热敏电阻、探头,其原理为:电阻值随着温度上升而迅速下降。其通常由2或3种金属氧化物组成, 混合在类似流体的粘土中,并在高温炉内锻烧成致密的烧结陶瓷。实际尺寸十分灵活,它们可小至0.010英寸或很小的直径。最大尺寸几乎没有限制,但通常适用半英寸以下。 

NTC温度传感器定义:

NTC热敏电阻、探头组(合)件.一种用热敏电阻外壳,延长引线,有时还用了一个接头组合而成的成品热敏电阻组(合)件。

结构

一般由NTC热敏电阻、探头(金属壳或塑胶壳等,延长引线,及金属端子或连端器组成

原理

利用NTC热敏电阻在一定的测量功率下,电阻值随着温度上升而迅速下降。利用这一特性, 可将NTC热敏电阻通过测量其电阻值来确定相应的温度,从而达到检测和控制温度的目的。

应用

● 空调,冰箱,冷柜,热水器,饮水机,暖风机,洗碗机,消毒柜,洗衣机,烘干机等家电设备上.

● 汽车空调,水温传感器,进气温度传感器,发动机

● 开关电源,UPS不间断电源,变频器,电锅炉等

● 智能马桶,电热毯等

特点:

● 灵敏度高,响应速度快

● 阻值和B值精度高,一致性互换性好

● 采用双层包封工艺,具有良好的绝缘密封性和抗机械碰撞,抗弯折能力

● 结构简单灵活,可根据客户不同设秆要求定制.

产品规格型号的表示方法

常规产品电性能参数

Part No.

R25℃

(KΩ)

B(K)

25/50℃

Rated Power @25℃(mW)

Dissipation Factor(δ)

(mW/℃)

Thermal time

Constant (S)

TS502□3274A

5.0

3274

10-20

2-4

5-20

TS502□3435B

5.0

3435

10-20

2-4

5-20

TS502□3470A

5.0

3470

10-20

2-4

5-20

TS502□3950A

5.0

3950

10-20

2-4

5-20

TS103□3274A

10.0

3274

10-20

2-4

5-20

TS103□3435B

10.0

3435

10-20

2-4

5-20

TS103□3470A

10.0

3470

10-20

2-4

5-20

TS103□3950A

10.0

3950

10-20

2-4

5-20

TS103□4100A

10.0

4100

10-20

2-4

5-20

TS153□3950A

15.0

3950

10-20

2-4

5-20

TS153□4100A

15.0

4100

10-20

2-4

5-20

TS203□3950A

20.0

3950

10-20

2-4

5-20

TS203□4100A

20.0

4100

10-20

2-4

5-20

TS223□4200A

22.0

4200

10-20

2-4

5-20

TS403□3928A

40.0

3928

10-20

2-4

5-20

TS503□3950A

50.0

3950

10-20

2-4

5-20

TS503□4100A

50.0

4100

10-20

2-4

5-20

TS104□3950A

100.0

3950

10-20

2-4

5-20

TS104□4100A

100.0

4100

10-20

2-4

5-20

TS104□4400A

100.0

4400

10-20

2-4

5-20

◆可根据客户要求定做特殊规格。

ntc温度传感器的性能介绍

ntc温度传感器通常由2或3种金属氧化物组成, 混合在类似流体的粘土中, 并在高温炉内锻烧成致密的烧结陶瓷。氧连结金属往往会提供自由电子。陶瓷通常是极好的绝缘体。但只有在理论上,当温度接近绝对零度时,热敏电阻型陶瓷才是这种情况。但是,当温度增加至较常见的范围时,热激发会抛出越来越多的自由电子。随着许多电子载流通过陶瓷,有效阻值则降低。电阻随温度的变化极为灵敏。典型变化为每摄氏度减少(-)7[%]至3[%]。这时适合宽温度范围内使用的任何传感器来说是最灵敏的。

额定室温电阻取决于基本材料的电阻率,大小和几何形状,以及电极的接触面积。厚而窄的热敏电阻具有相对高的电阻,而形状是薄而宽的则具有较低电阻。实际尺寸也十分灵活,它们可小至.010英寸或很小的直径。最大尺寸几乎没有限制,但通常适用半英寸以下。

ntc热敏电阻工作原理

负温度系数热敏电阻器是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2[%]~-6.5[%]。


ntc温度传感器术语解释

探头组(合)件一种用热敏电阻外壳,延长引线,有时还用了一个接头组合而成的成品热敏电阻组(合)件。

R0:热敏电阻在规定温度时零功率下的电阻

R-T曲线热敏电阻和温度表或曲线图

径向曲线:电子元件的引线,它以一直线从中央引至边缘引离出元件本体。引线彼此平行地继续向外引。

比率,0至50:将热敏电阻在0°C时的电阻除以其50°C时的电阻所得的数(比率),它可用斜率表示并有利于进行比较。

电阻:电气设备的特性,它阻挠电流流动。

电阻偏差:和指定的标称电阻温度曲线相比,由于斜率改变而带来的额外容差。加在25°C容差上,为此提供了一个图表(见封底的折叠插页)

电阻率:当减小到标准单位形状时材料体电阻的性质,标准形状被取作1立方厘米,测量单位是欧姆-厘米。它有利于在已知电阻率及其尺寸情况下预测热敏电阻的实际电阻。

响应时间:热敏电阻指示温度步进变化到规定数量范围所需的时间

自热:由于热敏电阻内的功率耗散而使自身温度上升。

斜率:在规定温度范围时电阻温度曲线的陡度。通常被指定为每°C欧姆变化或每°C:[%](值)变化(也被称作为α)。

热敏电阻:(热变电阻)一种温度敏感的陶瓷电阻器。

时间常数:(T.C.)热敏电阻指示温度步进变化到63[%]时所需的时间。

瓦特数:电气元件消耗或耗散功率的计量单位


零功率电阻值 RT(Ω)

RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

电阻值和温度变化的关系式为:

RT = RN expB(1/T – 1/TN)

RT : 在温度 T ( K )时的 NTC 热敏电阻阻值。

RN : 在额定温度 TN ( K )时的 NTC 热敏电阻阻值。

T : 规定温度( K )。

B : NTC 热敏电阻的材料常数,又叫热敏指数。

exp: 以自然数e 为底的指数( e = 2.71828 …)。

该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。

额定零功率电阻值 R25 (Ω)

根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度 25 ℃ 时测得的电阻值 R25,这个电阻值就是NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

材料常数(热敏指数) B 值( K )

B 值被定义为:

B=T1*T2/(T2-T1)ln(RT1/RT2)

RT1 : 温度 T1 ( K )时的零功率电阻值。

RT2 : 温度 T2 ( K )时的零功率电阻值。

T1、T2 :两个被指定的温度( K )。

对于常用的 NTC 热敏电阻, B 值范围一般在 2000K ~ 6000K 之间。

零功率电阻温度系数(αT )

在规定温度下, NTC 热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。

αT : 温度 T ( K )时的零功率电阻温度系数。

RT : 温度 T ( K )时的零功率电阻值。

T : 温度( T )。

B : 材料常数。

耗散系数(δ)

在规定环境温度下, NTC 热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。

δ: NTC 热敏电阻耗散系数,( mW/ K )。

△ P : NTC 热敏电阻消耗的功率( mW )。

△ T : NTC 热敏电阻消耗功率△ P 时,电阻体相应的温度变化( K )。

热时间常数(τ)

在零功率条件下, 当温度突变时, 热敏电阻的温度变化了始未两个温度差的 63.2% 时所需的时间,热时间常数与 NTC 热敏电阻的热容量成正比,与其耗散系数成反比。

τ:热时间常数( S )。

C: NTC 热敏电阻的热容量。

δ: NTC 热敏电阻的耗散系数。

额定功率Pn

在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。在此功率下,电阻体自身温度不超过其最高工作温度。

最高工作温度Tmax

在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。即:

T0-环境温度。

测量功率Pm

热敏电阻在规定的环境温度下,阻体受测量电流加热引起的阻值变化相对于总的测量误差来说可以忽略不计时所消耗的功率。

一般要求阻值变化大于0.1%,则这时的测量功率Pm为:

电阻温度特性

NTC热敏电阻的温度特性可用下式近似表示:

式中:

RT:温度T时零功率电阻值。

A:与热敏电阻器材料物理特性及几何尺寸有关的系数。

B:B值。

T:温度(k)。

更精确的表达式为:

式中:

RT:热敏电阻器在温度T时的零功率电阻值。

T:为绝对温度值,K;

A、B、C、D:为特定的常数。

NTC负温度系数热敏电阻R-T特性

B 值相同, 阻值不同的 R-T 特性曲线示意图

相同阻值,不同B值的NTC热敏电阻R-T特性曲线示意图

温度测量、控制用NTC热敏电阻器

ntc温度传感器的应用

医疗应用:一般需在数字式温度计、培养(恒温)箱、皮肤传感器、导尿管、透析设备和呼吸器里使用ntc温度传感器来监测温度、血流或气流。

家电应用:一般使用以各种包装的玻璃封装薄片来监测和控制烘箱、微波炉、洗衣机和烘干机、洗碗机和小家电-烤面包机、拌和器、干发器、卷发钳、淋浴器、空调器、炉子、冰箱、制冷机的温度和监控可充电镍铬电池和NiMH电池上的温度,对无绳电动工具和器具、可携式摄像机、手提式CD播放机/收音机进行充电控制。

汽车应用一般使用圆片、玻璃封装薄片或Uni-Curve?产品用于温度监测和控制气流及浸没应用。这些设备通常被用作进气传感器、电池、发动机和传动温度传感器、空调和内/外环境温度传感器,以及油和煤气液位传感器。

办公自动化/数据处理的应用一般使用ntc温度传感器来进行捆扎机、高架投影机、彩色打印机、复印机、中央处理机(主机)、电源的温度监测和控制,以及膝上型计算机、个人管理器和其它电池供电的便携式设备所用可充电NiCad和NiMH电池的充电控制。

电信应用一般使用ntc温度传感器来进行温度补偿或使用玻璃封装薄片来进行温度监测和控制。典型应用包括开关设备,以及无绳电话、收音机、呼机上的可充电NiCad和NiMH电池,用于充电控制。

军事/航空航天的应用要求使用精密薄片或玻璃珠组合件来监测飞机、卫星、地面雷达、载人轨道飞行器和深空探空火箭的温度。